Experimental antenna array calibration with artificial neural networks

نویسندگان

  • Hugo Bertrand
  • Dominic Grenier
  • Sébastien Roy
چکیده

It is well known that to perform accurate Direction of Arrivals (DOA) estimation using algorithms like MUSIC (MUltiple SIgnals Classification), antenna array data must be calibrated to match the theoretical model upon which DOA algorithms are based. This paper presents experimental measurements from independent sources obtained with a linear antenna array and proposes a novel calibration technique based on artificial neural networks trained with experimental and theoretical steering vectors. In this context, the performance of 3 types of neural networks—ADAptive LInear Neuron (ADALINE) network, Multilayer Perceptrons (MLP) network and Radial Basis Functions (RBF) network—is assessed. This is then compared with other calibration techniques, thus demonstrating that the proposed technique works well while being very simple to implement. The presented results cover operation with a single signal source and with two uncorrelated sources. The proposed method is applicable to arbitrary array topologies, but is presented herein in conjunction with a uniform linear array (ULA). r 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

"Technical Report" Performance Comparison of IHACRES Model and Artificial Neural Network to Predict the Flow of Sivand River

The accurate determination of river flow in watersheds without sufficient data is one of the major challenges in hydrology. In this regard, given the diversity of existing hydrological models, selection of an appropriate model requires evaluation of the performance of the hydrological models in each region. The objective of this study was to compare the performance of artificial neural network ...

متن کامل

Development of an in-cylinder processes model of a CVVT gasoline engine using artificial neural network

Today, employing model based design approach in powertrain development is being paid more attention. Precise, meanwhile fast to run models are required for applying model based techniques in powertrain control design and engine calibration. In this paper, an in-cylinder process model of a CVVT gasoline engine is developed to be employed in extended mean valve control oriented model and also mod...

متن کامل

Smart Antenna Design Using Neural Networks

Optimizing antenna arrays to approximate desired far field radiation patterns is of exceptional interest in smart antenna technology. This paper shows how to apply artificial intelligence, in the form of neural networks, to achieve specific beam-forming with linear antenna arrays. Multilayer feed-forward neural networks are used to maximize multiple main beams’ radiation of a linear antenna arr...

متن کامل

Predicting the Grouting Ability of Sandy Soils by Artificial Neural Networks Based On Experimental Tests

In this paper, the grouting ability of sandy soils is investigated by artificial neural networks based on the results of chemical grout injection tests. In order to evaluate the soil grouting potential, experimental samples were prepared and then injected. The sand samples with three different particle sizes (medium, fine, and silty) and three relative densities (%30, %50, and %90) were injecte...

متن کامل

Artificial Neural Networks (ANN) for the simultaneous spectrophotometric determination of fluoxetine and sertraline in pharmaceutical formulations and biological fluid

Simultaneous spectrophotometric estimation of Fluoxetine and Sertraline in tablets were performed using UV–Vis spectroscopic and Artificial Neural Networks (ANN). Absorption spectra of two components were recorded in 200–300 (nm) wavelengths region with an interval of 1 nm. The calibration models were thoroughly evaluated at several concentration levels using the spectra of synthetic binary mix...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing

دوره 88  شماره 

صفحات  -

تاریخ انتشار 2008